ELEC 3300 Introduction to Embedded Systems

Topic 2

More about Embedded Systems

Prof. Vinod Prasad

Expected Outcomes

- On successful completion of this topic, you will be able to
 - Draft the project plan from your abstract idea
 - Investigate your design concept of an embedded systems

Project Design from abstract idea to implementation

How do engineers solve daily life problems?

How do engineers solve daily life problems?

ELEC 3300 : Fall 2021

http://stem.mpls.k12.mn.us/
Vinod Prasad 6

We have to consider 6 components but not limited to these

	Description	Choices in this cou	urse
Products	Abstract idea of project (Define the functionality of the system)	Many	
	Data format / representation	Many	
	Programming Language	C-language	
	Communication Protocol	Many	
	Physical connection (Pins assignment)	Many	
	Hardware devices (Microcontroller, Peripherals)	Microcontroller: STN Peripherals: Many	M32 ARM Platform

· Some inquiries, but not limited to these

Let's start from a simple project idea:

Product

A device is used to monitor the temperature of this lecture room.

What do you concern in the design?

With some inquiries, but not limited to these

What next?

Let's start from a simple project idea:

Product

A device is used to monitor the temperature of this lecture room.

Take another example:
 Products

Another example:

Products

How to display onto monitor?

We have to consider 6 components but not limited to these

	Description	Choices in this	course	
Products	Abstract idea of project (Define the functionality of the system)	Many		
	Data format / representation	Many		
	Programming Language	C-language	This is the part	
	Communication Protocol	Many	we have to fill up.	
	Physical connection (Pins assignment)	Many		
	Hardware devices (Microcontroller, Peripherals)	Microcontroller: Peripherals: Mai	STM32 ARM Platform	

Get to know the hardware devices and their characteristics

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

Common

LDR

Symbol

How to connect the embedded system board to other device(s)?

Pins assignment

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

Connect other devices

Typical concerns when we connect other devices to the embedded

system board:

- Communication Protocol
 - Example: TCP/IP, USB, I²C
- This includes
 - Signal Types
 - Signal Direction flow

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

- Physical Connections
 - GPIO
 - Serial port / USB port

How to <u>program</u> the MCU board to control other device(s)?

High-level and low-level programming languages

High-level Language

```
void main()
{
    int i, z = 0;

for (i = 10, i>0,i--)
    {
      z+=i;
    }
}
```

Low-level Language

```
ORG 00H

MOV A, #0 ; A is accumulator
; for addition operation
MOV R0, #0 ; Assign: R0 = z
MOV R1, #10 ; Assign: R1 = i

LOOP:
ADD A, R1
DJNZ R1, LOOP
MOV R0, A
```

High-level and low-level programming languages

High-level Language

Trade-offs

Low-level Language

Programming skills - Easier

Handling codes in libraries

Limited Flexibility in variable declaration (R0, R1, etc.)

Higher Execution speed

Memory limitations of exe file

From high-level programming languages to program running

Typical method on bringing high-level programming language to execution

From high-level programming languages to program running

Example on translation

From high-level programming languages to program running

Example (Cont'd)

Low-level language Initialization 8051 Assembly Language ORG 00H MOV A. #0 ; A is accumulator ; for addition operation MOV R0, #0 ; Assign: R0 = zMOV R1, #10 ; Assign: R1 = i LOOP: ADD A, R1 DJNZ R1, LOOP MOV R0, A **END** Need to know where the data / instruction is stored in the hardware

system such as ROM / RAM

Address of R0 Address of R1 Address of A

Software

ELEC 3300 : Fall 2021

implementation

8051 Machine Codes in Main Memory

	Code Segment (Internal Code Memory) (ROM)		
	Address	Content	
_	(in Hex)	(in Hex)	
	0000	74	
	0001	00 ; 7400 (2 bytes) represents MOV A, #0	
	0002	78	
	0003	00 ; 7800 (2 bytes) represents MOV R0, #0	
	0004	79	
	0005	0A; 790A (2 bytes) represents MOV R1, #10	
	0006	29; 29 (1 byte) represents ADD A, R1	
	0007	D9 ;	
	8000	FD; D9FD (2 bytes) represents DJNZ R1, LOOP	
		(actually FD means jump 3 bytes backward,	
		0006-0009 = -3)	
	0009	F8 ; F8 (1 bytes) represents MOV R0, A	

Data Segn	nent (Internal Data Memory) (RAM)
Address	Content (in Hex)

00 00; Value of R0, assume data bank 0 is selected 01 10; Value of R1, assume data bank 0 is selected E0 00: Value of Accumulator

Hardware

26

Vinod Prasad

In-class activities

For Android devices, search HKUST iLearn at Play Store.

For iOS devices, search **HKUST iLearn** at App Store.

Lecture-3 Questions

- Data format / representation
- Bitmap format:
 - Image resolutions

1280 x 720

640 x 480

Color format

black and white

256-level grey scale

24-bit true color

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

32-bit true color

We have to consider 6 components but not limited to these

	Description	Choices in this cou	rse
Products	Abstract idea of project (Define the functionality of the system)	Many	
	Data format / representation	Many	
	Programming Language	C-language	
	Communication Protocol	Many	
	Physical connection (Pins assignment)	Many	A A A A
	Hardware devices (Microcontroller, Peripherals)	Microcontroller: STM Peripherals: Many	32 ARM Platform

Mixed Hardware/Software Co-Development

- Traditionally, in a mixed hardware/software system, hardware and software are seen as independent
- · Partitioning first, development afterward
- In general, changes in hardware imply changes in software and vice versa
- The overall verification is not done until the integration phase, which means that the cost of detecting hardware/software errors is very high

Mixed Hardware/Software Co-Development

Take an example:

Mixed Hardware/Software Co-Development

• It is obviously better if the hardware and software engineers can work together through the design and integration so that debugging become incremental rather than a post integration process

Example

Mixed Hardware/Software Co-Development

Japan Robot Trash Can

Mechanical Design

Electronics Circuit Design

Trash can level: JAPAN

Joystick controller

Wireless communication

Computer

Kinect

Object detection algorithm

https://www.youtube.com/watch?v=ZNWd4FFYDv0

What is the impact of embedded system?

Challenge

- A doctor is doing a surgery for a patient. Meanwhile, s/he would like to locate the cancer cells. How could you advise her / him?
 - Review the corresponding X-ray film (which was took before)
 - By experience
 - Consults with his / her colleagues
 - Use a device to "see" the cancer cells in the real-time

Hi-tech goggles detects cancer cells

https://www.insidescience.org/video/cancer-glasses-detect-tiny-tumors

Reflection (Self-evaluation)

- Do you
 - Draft a roadmap / design plan of your design project?
 - Understand the six design layers of your project?
 - Describe the Mixed Hardware/Software Co-Development?

Design embedded systems in tackling any challenges in COVID-19 pandemic?

